PHYSICAL REVIEW E, VOLUME 65, 036708

Taylor-series expansion and least-squares-based lattice Boltzmann method:
Two-dimensional formulation and its applications
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An explicit lattice Boltzmann metho(LBM) is developed in this paper to simulate flows in an arbitrary
geometry. The method is based on the standard LBM, Taylor-series expansion, and the least-squares approach.
The final formulation is an algebraic form and essentially has no limitation on the mesh structure and lattice
model. Theoretical analysis for the one-dimensio{id)) case showed that the version of the LBM could
recover the Navier-Stokes equations with second order accuracy. A generalized hydrodynamic analysis is
conducted to study the wave-number dependence of shear viscosity for the method. Numerical simulations of
the 2D lid-driven flow in a square cavity and a polar cavity flow as well as the “no flow” simulation in a square
cavity have been carried out. Favorable results were obtained and compared well with available data in the
literature, indicating that the present method has good prospects in practical applications.
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[. INTRODUCTION interpolation-supplemented lattice Boltzmann equatits:
LBE) requires an extra computational effort for interpolation
The development of the lattice Boltzmann metlibBM ) at every time step and it also has a strict restriction on the
as an alternative computational fluid dynamics approach haselection of interpolation points, which requires upwind nine
attracted more and more attention in recent ydars§|. points for two-dimensional problems and upwind 27 points
However, because of the essential restriction of the standarfdr three-dimensional problems if a structured mesh is used.
lattice Boltzmann equatioLBE) to the lattice uniformity, For the FDLBE and FVLBE methods, one needs to select
broad application of the LBM in engineering has beenefficient approaches such as upwind schemes to do numeri-
greatly hampered. For many practical problems, an irregu|a¢a| discretization in order to get the stable solution. As a
grid or a meshless structure is always preferable due to theonsequence, the computational efficiency greatly depends
fact that curved boundaries can be described more acc@ the selected numerical scheme. In addition, the numerical
rately, and that computational resources can be used mofhiffusion may affect the accuracy of the results, especially in
efficiently with it. the region where the flow gradient is large.

The drawback of the standard LBE restricting to the lat- " Order to implement the LBE more efficiently for flows
tice uniformity comes from its precursor—the lattice-gas cel-\Vith arbitrary geometry, we propose in this paper a version

ular automatelLGCA) [9-10. In the LECA, the symmetry ¢ i WU, B E2ee O e e veloping the
of the lattice, which guarantees the isotropy of the fourthRunge-Kutta method22], and the least-squares approach

tensor consisting of particle velocities, is an essential cond|[23] The final form of our method is an algebraic formula-
tion to obtain the Navier-Stokes equations. By this Cond't'on’tion, in which the coefficients only depend on the coordi-

a particle at one lattice node must move to its neighboring,»ia5 of mesh points and lattice velocity, and are computed
node in one time step. This is the condition of lattice unifor-;, 54vance. The method is also free of lattice models. To
mity. Although the LBE[11-13 with the Bhatnagar-Gross- 3jidate the proposed method, some theoretical analysis and
Krook (BGK) [13] model has made great improvements t04 generalized hydrodynamic analysis are presented. Numeri-
the LGCA, it also inherits the feature of lattice uniformity, ¢al simulations include “no flow” in the closed square cav-
which makes it macroscopically similar to a uniform jty a Jid-driven flow in a square cavity, and a polar cavity
Cartesian-grid solver. _ _ o flow. All simulations use a nonuniform mesh with mesh
Theoretically, the feature of lattice uniformity is not nec- points strongly clustering to the boundary. The obtained nu-
essary to keep because the distribution functions are continynerical results are very accurate. Numerical experience

ous in physical space. Currently, there are two ways to imshowed that the present method is an efficient and flexible
prove the standard LBM so that it can be applied to complexapproach for practical application.

problems. One is the interpolation-supplemented LBB}
LBM) proposed by He, Luo, and Dembo and He and Doolen
[14-14. The other is based on the solution of a differential
lattice Boltzmann equatiofLBE). For complex problems,
the differential LBE can be solved by the finite difference
(FDLBE) method with the help of coordinate transformation ~ The method developed in this paper is based on the well-
[17] or by the finite volume(FVLBE) approach[18—-21.  known fact that the density distribution function is a continu-
Numerical experience has shown that these methods haveoas function in physical space and can be well defined in any
good capability in real applications. However, the mesh system. Let us start with the standard LBM. The two-
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dimensional, standard LBE with BGK approximation can be C' E’
written as
C qB'|\E 4 P!
fo(X+ €40ty + e, 6t,t+6t)
B I
ey, —fa(xy,1) A 4D’
=f, (x,y,t)+ . ,
4 D
a=0.1,...N, ()

FIG. 1. Configuration of particle movement along thealirec-
tion.
wherer is the single relaxation timd;, is the density distri-
bution function along thex direction;f1is its corresponding , af J(P,t+6t)
equilibrium state, which depends on the local macroscopicfﬂf(A ’t+5t):fa(P't+5t)+AxAT
variables such as densigy and velocityU(u,v); & is the
time step ande,(€,x,€,y) is the particle velocity in thex +A af o(P,t+6t)
direction;N is the number of discrete particle velocities. Ob- Ya ay
viously, the standard LBE consists of two steps: collision and @
streaming. The macroscopic densityand momentum den-
sity pU are defined as

+O[(AXA)2,(AYA)2],

where AXa=Xa+ €, 0t —Xp, Aya=yp+e€,t—yp. Note
that the above approximation has a truncation error of the
N N second order. Substituting E@) into Eq. (1) gives
p=2 fa, pPU=2 fe,. 2)
a=0 a=0 of ,(P,t+6t) If (P, t+ 6t)
f(P,t+6t)+Axu I +Ay, 7y

Suppose that a particle is initially at the grid poirt vy, 9.
Along the« direction, this particle will stream to the position
(X+eot,yt+e,ot,t+6t). For a uniform lattice, 6x
=€ux0t, OY =€,y 0. SO, K+ €., Y+ €, 5) is at the grid
point. In other words, Eq(1) can be used to update the It is indicated that Eq(5) is a first-order differential equa-
density distribution functions exactly at the grid points. tion, which only involves two mesh poinsandP. When a
However, for a nonuniform grid, X+ €,46;,Y+€,y5) is  uniform grid is usedAx,=Ay,=0 and Eq(5) is reduced to
usually not at the grid pointx+ 6x,y+ dy). In the numeri-  the standard LBE1). Solving Eq.(5) can provide the den-
cal simulation, we are only interested in the density distribu-sity distribution functions at all the mesh points. In this pa-
tion function at the mesh point for all the time levels. So, theper, we try to develop an explicit formulation to update the
macroscopic properties such as the density and flow velocitgistribution function. In fact, our development is inspired
can be evaluated at every mesh point. To get the densitffom the Runge-Kutta methd@2]. As we know, the Runge-
distribution function at the grid poini( 6x,y+ dy) and the  Kutta method is developed to improve the Taylor-series
time levelt+ &;, we need to apply the Taylor-series expan-method in the solution of ordinary differential equations
sion or other interpolation techniques such as the one usg®DES. Like Eq. (5), the Taylor series method involves
by He, Luo, and Demb§14]. In this paper, the Taylor-series evaluation of different orders of derivatives to update the
expansion is used. Note that the time level for the positiorfunctional value at the next time level. For a complicated
(X+e.dt,yte,d;) and the grid point X+ ox,y+dy) is  expression of given ODEs, this application is very difficult.
the same, that ig,+ &;. So, the expansion in the time direc- To improve the Taylor-series method, the Runge-Kutta
tion is not necessary. As shown in Fig. 1, for simplicity, we method evaluates the functional values at some intermediate
let point A represent the grid poinixf ,ya,t), pointA’ rep-  points and then combines thetthrough the Taylor-series
resent the positionx +€,,J;,Yat €,y ,t+ dt), and point  expansioh to form a scheme with the same order of accu-
P represent the positionxf,yp,t+ 6t) with Xxp=Xs+ X, racy. With this idea in mind, we look at E@5). We know
yp=Yya+ dy. So Eq.(1) gives that at the time level+ 6t, the density distribution function
and its derivatives at the mesh poRare all unknowns. So,
Eqg. (5) has three unknowns in total. To solve for the three
unknowns, we need three equations. However, (Bjjjust
provides one equation. We need an additional two equations
For the general casé’ may not coincide with the mesh to close the system. As shown in Fig. 1, we can see that
point P. At first, we consider the Taylor-series expansionalong thea direction, the particles at two mesh poiftsB at
with truncation to the first-order derivative terms. So,the time levek will stream to the position®’, B’ at the time
f(A’,t+ 6t) can be approximated by the correspondinglevelt+ ét. The distribution functions at these positions can
function and its derivatives at the mesh pdihas be computed through Eql), which are given below

FEYA L) — F (A,
_f (AD+ fA D — 1 t).

©)

f (A t+8)=f (AD+[FYAD— T (AD]7. (3
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f (P t+8)=f (P,O)+[fYP,t)—f (P,1)]/7, (6) Taylor-series expansion at six points. As shown in Fig. 1, the
particles at six mesh poinf3, A, B, C, D, andE at the time
f (B t+6t)=1,(B,t)+[f4B,t)—f(B,)]/7. (7) level t will stream to positiond’, A’, B’, C’, D', andE’
at the time levelt+ 6t. The distribution functions at these
Using Taylor-series expansion with truncation to the first-positions can be computed through Efj)). Then by using
order derivative termd, (P’ ,t+ ét), f,(B’,t+ 6t) in above the second-order Taylor-series expansion at these positions in
equations can be approximated by the function and its determs of the distribution function and its derivatives at the
rivatives at the mesh poift. As a result, Eqs(6),(7) can be  mesh pointP, we can get the following equation system:
reduced to

6
af (P,t+ 6t af (P,t+ 6t i={s}"{V}=> s ,V;,i=P,AB,C,D,E, (11
L L\ nl) BPNWIAL L\ aelL) o={s} V=2 sV, (1)
X ay
here
4 P,t)—f(P,t w
=f, (P,t)+ RGP ), (8) .
T gi:fa(xi VYi 1t)+|_faa(xi Yi 1t)_ fa(xi VYi ,t)J/T,
af (P,t+ 6t af (P,t+ ot AT AV (Ax)? 32 Ay
£ (P.A+ 00+ Axg o it )+AyB (&y ) {si}T={1Ax;,Ay; ,(Ax)%2,(Ay;)%2, Ax;Ay;},

Vy={f,,of ,19x,0f ,19y,0°F . 19X,
foXB,t) =, (B,1) Vi g

=fa(B.OF ©) 3?F ol 3%y,0°F 1 Xy},
where g; is the postcollision state of the distribution function at the
ith point and the time levet, {s;}T is a vector with six
AXp=e.x0t, Ayp=e,ydt, elements formed by the coordinates of mesh poif\§, is
the vector of unknowns at the mesh poRitand the time
AXg=Xg+ xSt —Xp,Ayg=Yp+ €ayot—Yp. level t+ 8t, which also has six elements,; is the jth ele-

ment of the vectofs;}” andV; is the jth element of the
vector {V}. Our target is to find its first element
=f (P, t+4t). Equation systen{1l) can be put into the

Equations(5) and (8),(9) form a system to solve for three
unknowns. The solution of this system gives

f(P,t+t)=Ap/A (10) following matrix form:
where [SH{V}=1g}, (12
AZAXAAyB_AXBAyA+ AXBAyp_AXpAyB Where
+AXpAYa—AXalp, {9}={0r.0a.98.9¢c .00 .9} .
Ap=(AxaAyg—AXgAYa)gp+ (AXgAYp—AXpAYg)ga BEY
+ (AXpAYA— AXpAYp)Gs, }Sﬁi
_ _| s
gp=1 (PO [FAP,O~ (PO, [SI=lsi]=] sl
. {sp}"
9a=T(AD+[FXAD - T (A D]/, | {se}7

Axp Ayp (AXp)%2 (Ayp)®2 AXpAyp]
Axp Aya (Axa)?%2  (Ayp)?2 AXpAya
Axg Ayg (Axg)%2 (Ayg)%2 AxgAyg
Axc Ayc (Axc)?2 (Aye)?/2 AxcAyc |’
Axp Ayp (Axp)%2 (Ayp)?2 AxpAyp
Axg Aye (Axp)%2 (Ayg)?[2 AXeAYE |

gs=Tf.(B,t)+[fS{B,t)—f,(B,t)]/7.

Note thatgp, ga, gg are actually the postcollision state of
the distribution function at the time leveéland the mesh
point P, A, and B respectively. Equatiorf10) has second
order of truncation error, which may introduce a large nu-
merical diffusion. To improve the accuracy of numerical
computation, we need to truncate the Taylor-series expansion
to the second-order derivative terms. For the two-
dimensional case, this expansion involves six unknowns, that AXc=Xct+€n0t—=Xp, Ayc=Ycte,ot—Yp,
is, one distribution function, two first-order derivatives, and

three second-order derivatives at the time letseldt. To AXp=Xpt+€Ot—Xp, AYp=Yp+€,t—Yyp,
solve for these unknowns, we need six equations to close the

system. This can be done by applying the second-order AXg=Xg+ €4t —Xp, AYe=Ye+€,,6t—Yp.

Y

036708-3



C. SHU, X. D. NIU, AND Y. T. CHEW PHYSICAL REVIEW EG65 036708

The expressions dixp, Ayp, AXs, Aya, AXg, Ayg have  points aroundP and it should be larger than five. At each
been given previously. SincgS] is a (6x6)-dimensional point, we can define an error in terms of Efjl), that is,
matrix, it is very difficult to get an analytical expression for
the solution of equation systefi2). We need to use a nu-
merical algorithm to get the solution. Note that the maftSk er,=g;— 2 s,jVj, 1=012,..M. (13
only depends on the coordinates of mesh points, which can 1=
be computed once and stored for the application of (Eg).
at all time levels.

In practical applications, it was found that the mafr${ M M 6
might be singular or ill conditioned. To overcome this diffi- E= 2 err-zzz (g-— Z s V.
culty and make the method be more general, we introduce 2= S = A R = B
the least-squares approach to optimize the approximation by
Eqg. (11). Equation(11) has six unknowngelements of the To minimize the errorE, we need to seWE/dV, =0,k
vector {V}). If Eq. (11) is applied at more than six mesh =1, 2, ..., 6,which leads to
points, then the system is over determined. For this case, the
unknown vector can be decided from the least-squares [SI'[SI{V}=[S]"{g!, (15
method. For simplicity, let the mesh poiRtbe represented
by the indexi =0, and its adjacent points be represented bywhere [S] is a (M +1)x6-dimensional matrix, which is
indexi=1,2,...,M, whereM is the number of neighboring given as

6

The square sum of all the errors are defined as

2
(14)

Tl AXe Ayy (Axg)?2 (Ayg)?/2  AxpAyg T

1 Ax; Ay, (Ax)?%2 (Ay)?%2  Ax Ay,

[S]=
L1 Axy Ayy (Axy)22 (Ayw)42 AxyAyy] M+ 1)x6
|
and{g}={90,91,..-.9u}"- which are precomputed before the LBM is applied. There-
The Ax and Ay values in the matriXS] are given as fore, little computational effort is introduced as compared
with the standard LBE. Note that the functigris evaluated
AXg=e€,0t, Ayg=e,dt, (168 at the time levet. So, Eq.(18) is actually an explicit form to
update the distribution function at the time levet 6t for
AX =X+ €4St —Xg, AYi=Y;+e€40t—Yo, any mesh point. In the above process, there is no requirement
for i=1.2...M. (16b) for the selection of neighboring points. In other words, Eq.

(18) has nothing to do with the mesh structure. It only needs

Clearly, when the coordinates of mesh points are given, antp know the coordinates of the mesh points. Thus, we can say
the particle velocity and time step size are specified, the mahat Ed.(18) is basically a meshless form.
trix [S] is determined. Then from E@15), we obtain

{(Vi=(SIs) Y sIgl=[Al{g}. (17) lll. D2Q7 SPEED MODEL AND IMPLEMENTATION

OF BOUNDARY CONDITIONS ON THE WALL
Note that{A] is a 6x (M + 1)-dimensional matrix. From Eqg.

(17), we can have It can be seen that E¢18) is applied along ther direc-
M+1 tion. Here,a can be any direction. This implies that EG8)
f (Xg.Vo.t+ o) =V, = a%.q® ;. 18 can be uniformly applied to different lattice models. In this
«(X0:Yo )=V1 kzl 1K1 (18 paper, we select the D2Q7 model. The configuration of this

model is shown in Fig. 2. The discrete velocity of this model
whereaf, are the elements of the first row of the mafiid,  is defined as
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(O!O)! a=0

%= (co§ (a—1)m/3],siM(a—1)m/3]}c, a=12,..,6. (19

The parametec is the particle streaming speed. The fluid such as stress force is evaluated on the halfway wall between
kinetic viscosity is given by the bounce-back row and the first flow row. As shown in Fig.
2, for the D2Q7 model, at a boundary poifi, fs, andfg
point to the flow field from the wall, which will be deter-
mined from the boundary conditiofi;, f,, andf; are com-
puted by streaming from points inside the flow field. So,
The equilibrium density distributiof®is chosen to be using the halfway wall bounce-back conditidi,, fs, and

fe are evaluated as
1+1 zea.UJr4 e,-U\2 U?
2 6|7 c? c? 2]

The speed of sound of this modelds=c/2, and the equa-

tion of state isP=pc§ for an ideal gas. Although the pro-

posed method has a meshless feature, it is recommended to
use a structured grid. This is because in our method, only the To illustrate the accuracy of the scheme and its applicable
coordinates of mesh points are involved. When a structureghnge, a mathematical analysis is carried out in this section,
grid is used, it is much easier for us to define the coordinateand it will serve as a theoretical justification for the present
of mesh points. In our application, we use a structured gridmethod. For simplicity, we take the one-dimensional model

and takeM as eight for convenience. As shown in Fig. 3, for to illustrate our analysis. Under this consideration, the stan-
an internal mesh poir{, j) [noted as “0” in Eq.(18)], the  dard LBE becomes

eight neighboring points are taken as—(,j—1); (i

(27— 1)
8

v C2 6( . (20)

fa=p (21)

fa="11, fs=fs, fe="f3. (22)

IV. SOME THEORETICAL ANALYSIS
OF THE PRESENT METHOD

—1,); (i=1,j+1); (i, j—1); (i, j+1), (i+1,j—1); (i X, )= fu(x, 1)
+1,j); and (+1,j+1). Therefore, at each mesh point, we  f, (x+e,dt, t+ot)="F (x,t)+ .
only need to store nine coefficiends ., k=1,2,...,9 be- T 23)

fore Eq.(18) is applied.

Implementation of boundary conditions is an essential iS'Using Taylor-series expansion, we have
sue in LBM. Many kinds of boundary treatments have been '
published in the past few yeaf24-31. Although these

treatments are successful in a number of physical situations, fa(X+6.dt, t+dt)

we intend to believe that a complete halfway wall bounce- of of . St2 92f
back condition[30—3] is the most simple and efficient in =f, (x,t)+ &&—t“Jr eaéta—;+ - TZ“
practicle applications.
The complete halfway wall bounce-back condition, which (e, 8t)? *f, o’f, ot
originated from LGCA, assigns eath the value of thd , in + 2 o2 + eaﬁtzawx 6
its opposite direction with no relaxation on the bounce-back
points. The treatment is independent of the direction, which 3f, a°f, A A
gives us more convenience in treating complicated boundary X a3 +3ea(};t2[?x+ 3ea(9wxz e, X3 LR
problems. The complete halfway wall bounce-back condition
has second order of accuracy because macroscopic quantities (24)
3 2 With Eq. (24), the standard LBE is equivalent to
i=Lj+1f i,j+1 i+1,j+1
4 0
1
i—1,j ij i+l
5 6 i —1,7—1 | i,j-1 i+1,j-1

FIG. 2. Schematic plot of the D2Q7 model on a wall boundary  FIG. 3. Schematic plot of neighboring point distribution around
(thick curve. the point(i, j).
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&&f‘ﬁr &&fa+8t2 azfa+2 ﬂzfa+ , Pt Y%, 1) — (X ,1)
Tt o T 2 T T tax T S gi()="Fo(x )+ .
fo—f, . =f (x+e,ot,t+ o)
== +0(t%). (25)

of, of,
=f,(x,t)+ &W+eaé‘t(9—x+0(8t2). (29
Equation(25) will be used to analyze the present method. We

start with the Taylor-series expansion which truncates to th®ifferentiating Eq.(29) with respect tax gives
second-order derivative terms. With Taylor-series expansion,

Eq. (23) can be written as a9 9t ,°f,
Cadl S = Cadl o F Rt oy
. St ot St ox af, (e, o0t—ox)? &°f, 2
o(XF X, 8t) + (8,8t — 0%) —~ + 5 2 +(e,0t)*— 7 +0(4t%), (303
foAx, 1) — f 4(X,1)
—f (X )+ e (26) L3 e ,
T (601" 7 =(€,0)"— 7+ O(t"). (30b)

As shown previously, the truncation error of Eg6) is third Finally, by substituting Eqs(29) and (30) into Eq. (28), we
order. Equation(26) consists of three unknowns, which gptain exactly the same differential equation as @§). As
should be dgtermined by three equations. Suppose that a Ighown in[12] and[32], when the Chapman-Enskog expan-
cal mesh point; is considered. The three equations can besjon is applied to Eq(25) with two time scales, the Navier-
obtained by applying the Taylor-series expansion at thregtokes(NS) equations can be recovered with second order of
positions streamed, respectively, from mesh paxats, X;, accuracy. This indicates that our Taylor-series expansion
Xi+1. Solving the three equations, we can get the solution form can recover the NS equations with second order of
accuracy even when a nonuniform mesh#r; 1) is used.
f (X, t+ot)=a;0;(t)+a;_10;_1(t) ta;10; +1(1), Next, we will consider the Taylor-series expansion- and
(27) least-squares-based form. For the one-dimensional problem,
the second-order Taylor-series expansion has three un-
where knowns, that is, the distribution function and its first- and
second-order derivatives at the mesh poingand the time
9% —f.(x.1) level t+ ot. As shown above, to solve for these three un-
gi()=f,(x )+ a7 a\ i knowns, we need to have three equations, which are obtained
' anh ’ by applying the Taylor-series expansion at three positions
streamed from three mesh points 1, X;, X, 1. To apply
. _ _ the least-squares approach, the Taylor-series expansion is ap-
_ A=) F i) (1+0i+0) plied at four positions, which are streamed, respectively,
from four mesh points; 1, X;, Xj+1, Xj_». SO, we can get
four equations for three unknowns. As shown in the previous
(1=riqp) section, by using the least-squares approach, the final equa-

—’ a—l:—’
' i1 ' ri(rigatry)

a,,=— : .
LT (F ) tion system can be obtained as
4 a 1b f (X ,t+ 6t)
Ni=Xi=Xi-1)/(€,61), Iit1=(Xi11—X)/(€401). 2 o
1 st If ,(X;,t+ 6t)
Using second-order Taylor-series expansion, (@) can be a b EC “ IX
reduced to P (X t+ 8t)
1 (a0 —— 57—
=b -c —d (2
. st of, ot? é°f, 2 4
XUFN G 5 s
2 Oi+k-3
_ 99 . (e,01)% o°g; 3 K=1
—gi(t)—eaétx—i- 5 W_'—O[ét ] 4
(29) =| 2 dGnes | (3D)
4
On the other hand, from Eq23) and Taylor-series expan- 529,
sion, we have ey Rk
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4 4

4
where a= >, &, b=, &, c=,
&1 ey ey

€,0t—(Xi—Xi_2)

8, d=>, &

k=1

01= e, ot =1-ri_»,
€,0t— (X;— X
5,= e(lﬁ gy,
03= Cal =1
3 et
€40t —(Xi—Xi+1)
4= ezl‘D‘t =141,

The functiong is defined as before. The solution of E§1)
gives

4
f (X t+ot)= Z [(bc—ad)(b—ad,)

l>|r—\

—(b*~ac)(c—ad)1gi+k-3. (32

where A=(bc—ad)(4b—a?)—(b?—ac)(4c—ab). Using
Taylor-series expansiom; .3 can be expressed as

99 (Xisk-3—X)? 9°g
gi+k73:gi+(xi+k73_xi)5+%W
+O[(X k-3 %)°]
— g+ (5 De,at
5—1)2
+( k2 ) (e &)2 gl+o(§t3) (33)

By substituting Eq(33) into Eqg.(32), we obtain

99
fa(Xi ,t+ 6‘:) :Slgi +Szeaé\t a_

(e,01)% 9°g;
+S3T§—2- O[ﬁt ], (34)
where
1 4
KZ [(bc—ad)(b—ad) —(b?—ac)(c—ad?)],
1 4
SZ:K; [(bc—ad)(b—ad,)—(b?—ac)(c— aék)]
X(6k—1),

1 4
3_KZ (bc—ad)(b—adsy)

—(b?—ac)(c—as)](5—1)%

Furthermore, from the definition &f, b, c, andd, we have

PHYSICAL REVIEW E 65 036708

4 4

slzi (bc—ad) Y, (b—ad)—(b*—ac)>, (c—asd)
A k=1 k=1

= %[(bc— ad)(4b—a?) —(b?—ac)(4c—ab)]=1,

(353
1 4
S2=3 (bc—ad)kZ1 [—b+(b+a)s—asi]—(b>—ac)
XE (cok—c— 8(53 5)
1
=K[(bc—ad)[—4b+(b+a)a—ab]—(b2—ac)
X[ac—4c—a(c—b]]=—1, (35b

4

53:% (bc— ad)kzl {b(52—28+1)—a(se— 2582+ 8}

—(bz—ac)E {c(2-28+1)—a(s—255+ 52)})

:%[(bC—ad){b(b—2a+4)—a(c—2b+a)}
—(b?—ac){c(b—2a+4)—a(d—2c+b)}]=1. (350

The above results show that E@4) can be reduced to ex-
actly the same form as E@28). Equation(28) can recover

the NS equation with second order of accuracy. This means
that our least-squares-based form can also recover the NS
equation with second order of accuracy no matter what the
mesh is, uniform or nonuniform.

V. NUMERICAL TESTS

In this section, the proposed Taylor-series expansion- and
least-squares-based LBM is validated by some test cases.
First, the wave-number dependence of shear viscosity of the
present method is studied using a generalized hydrodynamic
analysis[33] for a sinusoidal shear wave. The second test
case is the “no flow” simulation in a square cavity, which is
used to check the detailed balance condition of the present
method with the use of nonuniform meshes. The other two
test cases are the lid-driven flows in a square cavity and in a
polar cavity. In these problems, the fluid is bounded by the
cavity and is driven by a uniform translation of the lid. The
cavity flow cases show rich vortex phenomena at many
scales depending on the Reynolds numbers, and there is
abundant literature to study the flow configuration. Thus,
these problems are ideal test cases for numerical methods
devised to simulate viscous flows. In the present paper, the
numerical work given by Ghia, Ghia, and Kellg4] for the
square cavity flow case, and numerical and experimental
work obtained by Fuchs and TillmafB5] for the polar cav-
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ity flow case, are used as a benchmark to evaluate the present
results.

Unless otherwise mentioned, all simulations were carried
out by using nine mesh points for least-squares optimizationwherek = (k, ,ky), k= \/kX2+ k2, zr(k) is an eigenvalue cor-
The configuration of these nine mesh points is shown irresponding to the hydrodynamic mode of the linearized evo-

1
v(k)=—zRelnzr(k)], (36)

Fig. 3. lution operatorL, which is given ag33]

A. Wave-number dependence of shear viscosity

L=A"1+M~1CM]. (37)

In Eq. (37), M is the transformation matrix from the discrete

velocity space to the moment spa€gjs the linearized col-

As shown in the previous theoretical analysis, our methodisjon operatorA is the advection vector which is a diagonal
does not affect the viscosities in the limit of wave numbermatrix. For the present method, the transformation matrix
k=0. Here, it is interesting to study the wave-number depenand the collision operatdZ remain the same as for the stan-

dence of shear viscosity at finite value kafWe will follow
the work of Lallemand and Lu¢33] to do this study. As
shown in[33], the shear viscosity(k) can be computed by

dard LBE, but the advection operatgris changed. For the
D2Q9 model, Lallemand and LU®&3] gave the matriced
andC as

1 1 1 1 1 1 1 1 1
-4 -1 -1 -1 -1 2 2 2 2
4 -2 -2 -2 -2 1 1 1 1
0 1 o -1 0 1 -1 -1 1
M = 0o -2 2 o 1 -1 -1 1|, (38
0 0 1 o -11 1 -1 -1
0 0O -2 O 2 1 -1 -1
0 1 -1 1 -1 0 O 0 0
0 0 0 0 1 -1 1 -1
0 0 0 0 0 0 0 0 0
S,asld —s, 0 S, Y, Vl3 0 S2¥2Vy/3 0 0 0
Szazld 0 —S3  S3y4V,/3 0 S3V4Vyl3 0 0 0
0 0 0 0 0 0 0 0 0
c=| 0 0 0 @ scl2  -s 0 O 0 o0 (39)
0 0 0 0 0 0 0 0 0
O 0 0 0 0 scf2 -s, 0 0
0 0 0 3V, 0 —3s7V, 0 -s4 0
0 0 0 BeyV2 0 3sgysVy2 0 0 —sg
|
When the standard LBE is used, the advection operatisr ~ Where
given as[33] M+1
Ca= ,-21 ajel*di, a=1,2,....8, (42)

A=diag1,p,q,1/p,1/q,pq,9/p,1/pa,p/q), (40

; Ar;
wherep=e*x, q=¢e*y. For the present method, the advec-

tion operatoﬁcan be obtained through E@.8), and written
as

A=diag1,;,C»,C3,C4,Cs,Cq,C7,Cg), (41)

=r;—rq. In this paper, we use a uniform mesh with
square grids. Sa\rj=e, ot=e,, wheredt is taken as one.
Thus, Eq.(42) can be reduced to

M+1

Co= 2, af e, a=12,...,8. (43)
=1
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(a) standard LBE (b) present method
FIG. 4. k dependence of viscosities for the standard LBE and Streamlines Density contours
the present method. The solid lines, dotted lines, and dashed lines ) . )
correspond td=0, /8, and /4, respectively. FIG. 7. _Strear_‘nllnes an_d density co_ntours at time ste@O0 for
“no flow” simulation by using a nonuniform mesh of 6565 and
I max=7-39.

The adjustable parameters and relaxation parameters that ap-
peared in the matri are taken from the work of Lallemand
and Luo[33], which are

Vi=Vy=0, a,=—8, az=4, c;=—2, y,=2/3,

Y2~ 18, Ya= — 18,

S,=1.64, s3=1.54, s5=5,=1.9, S3=59=1.99,

k=(k cos#,ksing).

With these parameters, the eigenvalues of the opekatan

be computed, and the shear viscosity can be determined
from, Eq. (36). The k dependence of the normalized shear
viscosity v(k)/vy for the standard LBE and the present
method is shown in Fig. 4. Three orientationkadre chosen
as:#=0 (solid line), #/8 (dotted ling, and«/4 (dashed ling

FIG. 5. A Typical nonuniform mesh in a square cavity (65 Ag shown in Fig. 4, both the standard LBE and the present
X 65). method create some numerical viscositiek &screases, but

the present method generates much higher numerical viscos-
ity. For example, ak=7/2 and in the direction of= /8,

the normalized shear viscosity of the standard LBE is about
2.5 while the corresponding value of the present method is
about 13.5. This may imply that the present method may not
be able to give accurate results at large valu&. of

0.00000001,

1.00000036

0000000010 1.00000024

0.00000000

=739 van e =739 0.000000007 1.00000036
| |max L ‘Aﬂ max .05 o =335 0.000000005 1.00000036
nnnnn o =219 0.000000004
ooooo oy =21$
0.00000000 1.00000036 1.00000048
awe 000 4000 o <000 2000 so0 w0
Time Step Time Step
(a) convergence of ]U|m (b) convergence of |A;’)1max Streamlines Density contours

FIG. 6. Convergence history of the maximum velocity magni-  FIG. 8. Streamlines and density contours at converged state for
tude and the relative difference of density for “no flow” simulation “no flow” simulation by using a nonuniform mesh of 6565 and
in a square cavity. I max=7-39.
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=7 /)

(a) Re=100, 49x49 (b) Re=400, 49x49 (c) Re=1000, 9797 (a) Re=100, 49x49 (b) Re=400, 49x49 (c) Re=1000, 97x97

(d) Re=5000, 145x145 (e) Re=10000, 145145 (d) Re=5000, 145x145 () Re=10000, 145x145
FIG. 9. Streamlines for the flow in a lid-driven square caviy. FIG. 10. Vorticity contours for the flow in a lid-driven square
Re=100, 49<49; (b) Re=400, 49<49; (c) Re=1000, 9% 97; (d)  cavity. (8) Re=100, 49<49; (b) Re=400, 49 49; (c) Re=1000,
Re=5000, 145<145; () Re=10000, 145 145. 97X 97; (d) Re=5000, 145< 145; (e) Re=10000, 145 145.

B. “No flow” simulation in a square cavit . o .
a y (pp=1) and zero velocity distribution in the whole domain.

One of the crucial measures in the application of the LBMThe viscosity is set as 1/12, and a no-slip boundary condition
is the so-called detailed balance condition. Violation of thisis imposed on the four boundaries. It was found that for all
condition will lead to spurious currents. The detailed balancehe following time steps, the maximum velocity magnitude,
condition can be studied by the “no flow” simulation in a defined aS|U|max=ma>§j(\/m), and the maximum
region, in which no external forces are introduced, and alfgjative difference of density, defined a$Ap]ma
the boundaries are the solid walls. When a uniform density:maqup_povpo), are remained in the order of 18 and
and zero velocity distribution are set up in the whole field atyo-7, fespectively, by three nonuniform meshes. This result
the beginning, the detailed balance condition demands thaiowed that the nonuniform mesh has some effect on the

the uniform density and zero velocity throughout the spacgjetajled balance condition, but the effect is so small that it
remain for all times; or numerically, the maximum velocity can pe ignored.

magnitude and relative difference of density are kept very \ye have also conducted the “no flow” simulation by giv-
small for all times. . o _ing a velocity disturbance at the beginning, and found that
_In this paper, the “no flow” simulation in a square cavity the flow field would turn to be static at the converged state,
is conducted by using three nonuniform meshes. The mesjihere the maximum velocity magnitude and the relative dif-
size of the three nonuniform meshes is the same, that is 6@rence of the density are kept in the order of 4cand

X 65. The difference is on the stretch ratiga, which is 1077 respectively. By giving a velocity disturbance of
defined as the ratio of the maximum mesh spacing over the. g 1 singrx)sin(zy) and v=0.1 singrx)sin(my) at the begin-
minimum mesh spacing. _The stretch ratios of three NONUNiping, the convergence history 39|z, and| A p] e for three
form meshes are, respectively, 2.19, 3.35, and 7.39. A typicg{onyniform meshes is shown in Fig. 6. It can be seen from
mesh setup with a,=7.39 is shown in Fig. 5. The conver- rig. 6 that all three nonuniform meshes can converge to the

gence criterion for the computation is set as static solution, but the time steps required for convergence is
U, 5~ U different. The required time steps for convergence are, re-
tro t —8 (42 ~ Spectively, 3400 forr y2,=2.19, 3500 forr ma=3.35, and
”Utﬂ%” h ' 4000 forr ,,,=7.39. The need of more time steps for a con-

verged solution by a nonuniform mesh with larger stretch
We start our computation by assigning a uniform densityratio is due to the use of smaller time step size. Figure 7

TABLE I. Comparison for locations of primary vortex center at different Reynolds numbers.

\Vortex center

Reynolds number Ghiat al.[34] Present method CPU sec by present method
100 (0.61, 0.73 (0.61, 0.73 195.521
400 (0.56, 0.6} (0.56, 0.60 600.3833
1000 (0.54, 0.56 (0.54, 0.56 3567.650
5000 (0.52, 0.54 (0.53, 0.56 20443.85
10000 (0.51, 0.5} (0.51, 0.52 64401.57
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shows the streamlines and density contours obtained by us- 06 R,
ing a nonuniform mesh of ,,,=7.39 after 100 time steps. | 0.4 1 vt
The effect of initial disturbance on the streamline and density 0.2 result

is clearly observed in the figure. However, when the compu- +°] s Ghisdatal V074

tation is converged, the effect of initial disturbance is re- 47 prosent 024

moved, and a static result is obtained. This can be seenc.- result oa

clearly in Fig. 8, which shows the streamlines and density ,{ % o -
contours by using the same nonuniform mesh at the con- -04-02 o 02 04 08 08 1 o 02 04 06 08 I

verged state. v X

(@  Re=100, 49x49

[ U 0.6 -

C. Lid-driven flows in a square cavity o 4 Ghia's data
In this case, the top lid moves from left to right with a ” 02+ T Present

constant velocityd. Nonuniform meshes of 4949 for Re v s crasdaa| V0o
=100 and 400, 9% 97 for Re=1000, 145<145 for Re 1, present 024
=5000 and 10000 are used, respectively, for the calculation. o.- result oa
The Reynolds number is defined as=RéL/v (based on the 0 - 06 I :
lid velocity and the length of the square cayitfhe use of 04 02 0 02 04 08 08 1 0 02 04 08 08 1
nonuniform mesh is desirable, especially for the high Rey-
nolds number case. This is because the thin boundary layer is (b)  Re=400, 49x49

attached to the solid boundaries. So, to capture the thin
boundary layer, the mesh spacing near the wall should be
very small. Apart from the solid wall, relatively large mesh 021
spacing can be used. In this manner, we can capture the thir qs-
boundary layer, and in the meantime, we can save the com- |, |
putational effort.

Initially a constant densityp=1 is prescribed in the
whole field, and the velocities in the interior of the cavity are  ° "= ~=—"—r—"—=— T T T e .
set to zero. On the top, thecomponent velocity i€J, which v
is set to 0.15, and thg-component velocity is zero. At the (©)  Re=1000, 9797
end of each time step, the density distribution functigrat
the top is set to the equilibrium state. The whole halfway
wall bounce-back boundary conditions are used on the other o1
three solid walls. For the upper two corners between the 5]
stationary wall and the moving wall, which are singular Y |
points, it is found that treatment with the moving wall or the
stationary wall points has little difference in our simulations.

1 o e s 0.6

4  Ghia's data

Present
result

4  Ghia's data

—Present 0.2 4

0.24 resuit

1

0.6

A Ghia’s data
0.4 1

Present
0.2 1 result

4 Ghia's data Vo 4

Present .02 4
result

0.2 1 -0.4 4

In order to make a comparison with the results of Ghia, Ghia, +———+———— 06 ——
and Keller[34], the present results are normalized according ~ °° ** °y%%® ©° 7 1 R
to the length of the cavity and the velocity of the top lid. (d)  Re=5000, 145x145

Note that the results of Ghia, Ghia, and Kell&4] were
obtained by using the multigrid finite difference method to 17— emrm
solve the vorticity-stream function formulation.

Figure 9 shows the streamlines for different Reynolds

numbers. The effect of the Reynolds number on the flow {°]
pattern and the structure of the steady recirculating eddies iso. |
clearly observed in this figure. Apparently, the flow struc-
tures match very well with those of Ghia, Ghia, and Keller
[34]. Figure 10 shows the vorticity contours inside the cavity. ~ °*———+——————
From this figure, one can easily see that the scale of the ~° ** °uv®® % o7 7 0 02 04406 08 1
primary vortex increases with the Reynolds number, and the (€)  Re=10000, 145x145
magnitude of the vorticity in the central region becomes
larger and larger with the increase of the Reynolds number. FIG. 11. U (left) andV (right) velocity profiles along vertical
Table | gives the detailed comparison for locations of the2nd horizontal central lines for different Reynolds numbers.
vortex center obtained by the present method and by Ghia,
Ghia, and Kelle34]. The relative errors between the two about this aspect is lacking, we still believe, from our nu-
solutions are less than 4%. In this table, we also give thenerical experiences, that the computational efficiency of the
CPU time(se9 that is spent in the present computation onpresent method is competitive as compared with the tradi-
the PIIl 866 personal computer. Although other informationtional CFD tools. TheJ andV velocities along their respec-

A Ghia's result
0.8 1

Present Result

A Ghia's
result

Present
result
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TABLE Il. Grid sensitivity with different stretch ratios (Re400).

Mesh size Primary vortex CPU
Method (stretch rati® center Ymin W, (seq
Ghiaet al. 257x 257 (1.0 (0.5547, 0.605p —0.113909 2.29469
[34]
D2Q9 193x193 (1.0 (0.5573, 0.604p —0.113539 2.28882 7688.94
t
(SLaB”;ard 97x97 (1.0) (0.5625, 0.6042 ~0.107 039 218727 1081.55
D2Q9 97x97 (3.35 (0.5570, 0.6061L 0.113 642 2.29151 5696.45
(Present
49x 49 (2.0) (0.5611, 0.6004 —0.110376 2.36718 463.01
D2Q7 49x49 (3.39 (0.5597, 0.605pD —-0.112574 2.304 63 600.38
(Present
97x97 (3.3H (0.5570, 0.6061L —0.113629 2.29150 4564.69

tive central line are displayed in Fig. 11 for different Rey- accuracy. As shown in Table II, for Ret00, the standard
nolds numbers. Obviously, our simulation results are in good BE needs at least 193193 mesh points to reach the same
agreement with those of Ghia, Ghia, and Ke(la4]. order of accuracy as the present method using the mesh size
To test the mesh sensitivity, numerical simulations forof 97x 97. As a result, the standard LBE requires 7688.94
Re=400 on mesh sizes of 4949 and 9% 97 with different  sec CPU time while the present method only needs 5696.45
stretch ratios were carried out. The results of the D2Q%ec CPU time. The high efficiency of the present method is
model using the present method on the nonuniform mesh adpvious. In addition, Table Il reveals that the present method
97X 97 (rma=3.35) and the standard LBE on the uniform with the D2Q7 model saves about 20% of computational
mesh of 9% 97 are also presented for comparison. The detime as compared with the D2Q9 model when the same mesh
tailed comparison of the primary vortex center, the minimumpoints and distributions are used.
stream function valueVl ,;, and the vorticity value at the
primary vortex centew, . , and the CPU time required on D. Flow in a polar cavity
Plll 866 are listed in Table Il. As shown in this table, the _ _ .
accuracy of the present method increases with the increase of 1€ Polar cavity case is used to show the capability of the
the grid stretch ratio. At the same level of the grid stretchPr€sent method in treating the flow problem with complex
ratio, the accuracy of the present method is improved witff€0Metry. The geometry with a nonuniform mesh is given in
the increase of the mesh points. It is also seen from this tablEi9- 12- The Reynolds numbébased on the lid velocity and
that our method needs about five times the computationdf€ radius of the inner circlés 350. Initially, a clockwise
time of the standard LBE when the same number of mesp{elocny of U=0.15 is set on the inner lid and other condi-
points is used. However, this undesirable feature of thdionS are the same as those in the square cavity case. All
present method can be compensated for by using fewer me&gsults are normalized in terms of the lid velocity and the
points that, for the standard LBE, cannot give satisfactory@dius of the inner circle.

1

0.75 4

0.5 1

0.25
0 05 : : : .
0 0.2 04 0.6 0.8 1
F-ry
FIG. 13. Comparison of radialf) and azimuthal {,) velocity

profiles along the line ob=0° with Re=350 (M, numerical data
by Fuchs and Tillmark;A, experimental data by Fuchs and

FIG. 12. Geometry and a typical nonuniform mesh for the flow Tillmark; —, present result of 4949; — — —, present result of

in a polar lid-driven cavity. 65X 65; ———, present result of 8481).
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Figure 13 shows the steady-state azimuthal and radial vehe present method is prospective in practical applications.
locity profiles along the line ofd =0. Different results, The beauty of the present method is that it still keeps the
which are obtained on 4949, 65<65, and 8% 81 nonuni-  local and explicit features of the standard lattice Boltzmann
form meshes, together with the experimental and numericahethod. Therefore, it is able to exploit fully the power of
results of Fuchs and Tillmark35] are included in the figure parallel computing. The other advantage of the present
for comparison. The results obtained by the present methoghethod is that it is easy for application to flow problems with
agree well with those of Fuchs and Tillmark’s numerical complex geometry. Furthermore, the computational effi-
simulation [35]. The present solutions also compare We”ciency of the present method is competitive as compared

with the experimental data and the discrepancy betwee;i, that of the standard LBE and of the conventional CFD
them may be attributed to the three-dimensional effect in the ;| ers.

experiments in which three-dimensional flow structures are Although the test problems shown in this paper are rela-

observed. Further increase of the mesh points can lead ER/er simple, the proposed method can be applied to any
more accurate results by the present method. . :

other complex problems with the use of nonuniform mesh
and different lattice models. The present paper shows that the
proposed method gives much larger shear viscosity at large

An explicit Taylor-series expansion- and least-squaresvalue of wave numbek. This result is based on a uniform

based lattice Boltzmann method was developed in this papemesh and the use of symmetric mesh point distribution used
Theoretical analysis for a one-dimensional case showed th& Eq. (18). Further study may be needed for thelepen-
the present method could recover the Navier-Stokes equaence of shear viscosity at large valuekafthen the nonuni-
tions with second order of accuracy. The successful numeriform mesh and upwind mesh point distribution are used in
cal simulations for the lid-driven cavity flows showed that Eq. (18).
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