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Taylor-series expansion and least-squares-based lattice Boltzmann method:
Two-dimensional formulation and its applications

C. Shu, X. D. Niu, and Y. T. Chew
Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 117576

~Received 1 August 2001; published 6 March 2002!

An explicit lattice Boltzmann method~LBM ! is developed in this paper to simulate flows in an arbitrary
geometry. The method is based on the standard LBM, Taylor-series expansion, and the least-squares approach.
The final formulation is an algebraic form and essentially has no limitation on the mesh structure and lattice
model. Theoretical analysis for the one-dimensional~1D! case showed that the version of the LBM could
recover the Navier-Stokes equations with second order accuracy. A generalized hydrodynamic analysis is
conducted to study the wave-number dependence of shear viscosity for the method. Numerical simulations of
the 2D lid-driven flow in a square cavity and a polar cavity flow as well as the ‘‘no flow’’ simulation in a square
cavity have been carried out. Favorable results were obtained and compared well with available data in the
literature, indicating that the present method has good prospects in practical applications.
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I. INTRODUCTION

The development of the lattice Boltzmann method~LBM !
as an alternative computational fluid dynamics approach
attracted more and more attention in recent years@1–8#.
However, because of the essential restriction of the stan
lattice Boltzmann equation~LBE! to the lattice uniformity,
broad application of the LBM in engineering has be
greatly hampered. For many practical problems, an irreg
grid or a meshless structure is always preferable due to
fact that curved boundaries can be described more a
rately, and that computational resources can be used m
efficiently with it.

The drawback of the standard LBE restricting to the l
tice uniformity comes from its precursor—the lattice-gas c
lular automata~LGCA! @9–10#. In the LGCA, the symmetry
of the lattice, which guarantees the isotropy of the fou
tensor consisting of particle velocities, is an essential con
tion to obtain the Navier-Stokes equations. By this conditi
a particle at one lattice node must move to its neighbor
node in one time step. This is the condition of lattice unif
mity. Although the LBE@11–12# with the Bhatnagar-Gross
Krook ~BGK! @13# model has made great improvements
the LGCA, it also inherits the feature of lattice uniformit
which makes it macroscopically similar to a unifor
Cartesian-grid solver.

Theoretically, the feature of lattice uniformity is not ne
essary to keep because the distribution functions are con
ous in physical space. Currently, there are two ways to
prove the standard LBM so that it can be applied to comp
problems. One is the interpolation-supplemented LBM~IS-
LBM ! proposed by He, Luo, and Dembo and He and Doo
@14–16#. The other is based on the solution of a different
lattice Boltzmann equation~LBE!. For complex problems
the differential LBE can be solved by the finite differen
~FDLBE! method with the help of coordinate transformati
@17# or by the finite volume~FVLBE! approach@18–21#.
Numerical experience has shown that these methods ha
good capability in real applications. However, th
1063-651X/2002/65~3!/036708~13!/$20.00 65 0367
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interpolation-supplemented lattice Boltzmann equation~IS-
LBE! requires an extra computational effort for interpolati
at every time step and it also has a strict restriction on
selection of interpolation points, which requires upwind ni
points for two-dimensional problems and upwind 27 poin
for three-dimensional problems if a structured mesh is us
For the FDLBE and FVLBE methods, one needs to sel
efficient approaches such as upwind schemes to do num
cal discretization in order to get the stable solution. As
consequence, the computational efficiency greatly depe
on the selected numerical scheme. In addition, the nume
diffusion may affect the accuracy of the results, especially
the region where the flow gradient is large.

In order to implement the LBE more efficiently for flow
with arbitrary geometry, we propose in this paper a vers
of LBM, which is based on the standard LBM, the we
known Taylor-series expansion, the idea of developing
Runge-Kutta method@22#, and the least-squares approa
@23#. The final form of our method is an algebraic formul
tion, in which the coefficients only depend on the coor
nates of mesh points and lattice velocity, and are compu
in advance. The method is also free of lattice models.
validate the proposed method, some theoretical analysis
a generalized hydrodynamic analysis are presented. Num
cal simulations include ‘‘no flow’’ in the closed square ca
ity, a lid-driven flow in a square cavity, and a polar cavi
flow. All simulations use a nonuniform mesh with mes
points strongly clustering to the boundary. The obtained
merical results are very accurate. Numerical experie
showed that the present method is an efficient and flex
approach for practical application.

II. TAYLOR-SERIES EXPANSION- AND
LEAST-SQUARES-BASED LBM

The method developed in this paper is based on the w
known fact that the density distribution function is a contin
ous function in physical space and can be well defined in
mesh system. Let us start with the standard LBM. The tw
©2002 The American Physical Society08-1
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dimensional, standard LBE with BGK approximation can
written as

f a~x1eaxdt,y1eaydt,t1dt !

5 f a~x,y,t !1
f a

eq~x,y,t !2 f a~x,y,t !

t
,

a50.1, . . . ,N, ~1!

wheret is the single relaxation time;f a is the density distri-
bution function along thea direction; f a

eq is its corresponding
equilibrium state, which depends on the local macrosco
variables such as densityr and velocityU(u,v); dt is the
time step andea(eax ,eay) is the particle velocity in thea
direction;N is the number of discrete particle velocities. O
viously, the standard LBE consists of two steps: collision a
streaming. The macroscopic densityr and momentum den
sity rU are defined as

r5 (
a50

N

f a , rU5 (
a50

N

f aea . ~2!

Suppose that a particle is initially at the grid point~x, y, t!.
Along thea direction, this particle will stream to the positio
(x1eaxdt,y1eaydt,t1dt). For a uniform lattice, dx
5eaxd t , dy5eayd t . So, (x1eaxd t ,y1eayd t) is at the grid
point. In other words, Eq.~1! can be used to update th
density distribution functions exactly at the grid poin
However, for a nonuniform grid, (x1eaxd t ,y1eayd t) is
usually not at the grid point (x1dx,y1dy). In the numeri-
cal simulation, we are only interested in the density distrib
tion function at the mesh point for all the time levels. So, t
macroscopic properties such as the density and flow velo
can be evaluated at every mesh point. To get the den
distribution function at the grid point (x1dx,y1dy) and the
time level t1d t , we need to apply the Taylor-series expa
sion or other interpolation techniques such as the one u
by He, Luo, and Dembo@14#. In this paper, the Taylor-serie
expansion is used. Note that the time level for the posit
(x1eaxd t ,y1eayd t) and the grid point (x1dx,y1dy) is
the same, that is,t1d t . So, the expansion in the time dire
tion is not necessary. As shown in Fig. 1, for simplicity, w
let point A represent the grid point (xA ,yA ,t), point A8 rep-
resent the position (xA1eaxd t ,yA1eayd t ,t1dt), and point
P represent the position (xP ,yP ,t1dt) with xP5xA1dx,
yP5yA1dy. So Eq.~1! gives

f a~A8,t1dt !5 f a~A,t !1@ f a
eq~A,t !2 f a~A,t !#/t. ~3!

For the general case,A8 may not coincide with the mes
point P. At first, we consider the Taylor-series expansi
with truncation to the first-order derivative terms. S
f a(A8,t1dt) can be approximated by the correspondi
function and its derivatives at the mesh pointP as
03670
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f a~A8,t1dt !5 f a~P,t1dt !1DxA

] f a~P,t1dt !

]x

1DyA

] f a~P,t1dt !

]y
1O@~DxA!2,~DyA!2#,

~4!

where DxA5xA1eaxdt2xP , DyA5yA1eaydt2yP . Note
that the above approximation has a truncation error of
second order. Substituting Eq.~4! into Eq. ~1! gives

f a~P,t1dt !1DxA

] f a~P,t1dt !

]x
1DyA

] f a~P,t1dt !

]y

5 f a~A,t !1
f a

eq~A,t !2 f a~A,t !

t
. ~5!

It is indicated that Eq.~5! is a first-order differential equa
tion, which only involves two mesh pointsA andP. When a
uniform grid is used,DxA5DyA50 and Eq.~5! is reduced to
the standard LBE~1!. Solving Eq.~5! can provide the den-
sity distribution functions at all the mesh points. In this p
per, we try to develop an explicit formulation to update t
distribution function. In fact, our development is inspire
from the Runge-Kutta method@22#. As we know, the Runge-
Kutta method is developed to improve the Taylor-ser
method in the solution of ordinary differential equatio
~ODEs!. Like Eq. ~5!, the Taylor series method involve
evaluation of different orders of derivatives to update t
functional value at the next time level. For a complicat
expression of given ODEs, this application is very difficu
To improve the Taylor-series method, the Runge-Ku
method evaluates the functional values at some intermed
points and then combines them~through the Taylor-series
expansion! to form a scheme with the same order of acc
racy. With this idea in mind, we look at Eq.~5!. We know
that at the time levelt1dt, the density distribution function
and its derivatives at the mesh pointP are all unknowns. So
Eq. ~5! has three unknowns in total. To solve for the thr
unknowns, we need three equations. However, Eq.~5! just
provides one equation. We need an additional two equat
to close the system. As shown in Fig. 1, we can see
along thea direction, the particles at two mesh pointsP, B at
the time levelt will stream to the positionsP8, B8 at the time
level t1dt. The distribution functions at these positions c
be computed through Eq.~1!, which are given below

FIG. 1. Configuration of particle movement along thea direc-
tion.
8-2
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f a~P8,t1dt !5 f a~P,t !1@ f a
eq~P,t !2 f a~P,t !#/t, ~6!

f a~B8,t1dt !5 f a~B,t !1@ f a
eq~B,t !2 f a~B,t !#/t. ~7!

Using Taylor-series expansion with truncation to the fir
order derivative terms,f a(P8,t1dt), f a(B8,t1dt) in above
equations can be approximated by the function and its
rivatives at the mesh pointP. As a result, Eqs.~6!,~7! can be
reduced to

f a~P,t1dt !1DxP

] f a~P,t1dt !

]x
1DyP

] f a~P,t1dt !

]y

5 f a~P,t !1
f a

eq~P,t !2 f a~P,t !

t
, ~8!

f a~P,t1dt !1DxB

] f a~P,t1dt !

]x
1DyB

] f a~P,t1dt !

]y

5 f a~B,t !1
f a

eq~B,t !2 f a~B,t !

t
, ~9!

where

DxP5eaxdt, DyP5eaydt,

DxB5xB1eaxdt2xP ,DyB5yB1eaydt2yP .

Equations~5! and ~8!,~9! form a system to solve for thre
unknowns. The solution of this system gives

f a~P,t1dt !5DP /D, ~10!

where

D5DxADyB2DxBDyA1DxBDyP2DxPDyB

1DxPDyA2DxADP ,

DP5~DxADyB2DxBDyA!gP1~DxBDyP2DxPDyB!gA

1~DxPDyA2DxADyP!gB ,

gP5 f a~P,t !1@ f a
eq~P,t !2 f a~P,t !#/t,

gA5 f a~A,t !1@ f a
eq~A,t !2 f a~A,t !#/t,

gB5 f a~B,t !1@ f a
eq~B,t !2 f a~B,t !#/t.

Note thatgP , gA , gB are actually the postcollision state o
the distribution function at the time levelt and the mesh
point P, A, and B respectively. Equation~10! has second
order of truncation error, which may introduce a large n
merical diffusion. To improve the accuracy of numeric
computation, we need to truncate the Taylor-series expan
to the second-order derivative terms. For the tw
dimensional case, this expansion involves six unknowns,
is, one distribution function, two first-order derivatives, a
three second-order derivatives at the time levelt1dt. To
solve for these unknowns, we need six equations to close
system. This can be done by applying the second-o
03670
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Taylor-series expansion at six points. As shown in Fig. 1,
particles at six mesh pointsP, A, B, C, D, andE at the time
level t will stream to positionsP8, A8, B8, C8, D8, andE8
at the time levelt1dt. The distribution functions at thes
positions can be computed through Eq.~1!. Then by using
the second-order Taylor-series expansion at these positio
terms of the distribution function and its derivatives at t
mesh pointP, we can get the following equation system:

gi5$si%
T$V%5(

j 51

6

si , jVj ,i 5P,A,B,C,D,E, ~11!

where

gi5 f a~xi ,yi ,t !1 b f a
eq~xi ,yi ,t !2 f a~xi ,yi ,t !c/t,

$si%
T5$1,Dxi ,Dyi ,~Dxi !

2/2,~Dyi !
2/2,DxiDyi%,

$V%5$ f a ,] f a /]x,] f a /]y,]2f a /]x2,

]2f a/]2y,]2f a /]x]y%T.

gi is the postcollision state of the distribution function at t
i th point and the time levelt, $si%

T is a vector with six
elements formed by the coordinates of mesh points,$V% is
the vector of unknowns at the mesh pointP and the time
level t1dt, which also has six elements,si , j is the j th ele-
ment of the vector$si%

T and Vj is the j th element of the
vector $V%. Our target is to find its first elementV1
5 f a(P, t1dt). Equation system~11! can be put into the
following matrix form:

@S#$V%5$g%, ~12!

where

$g%5$gP ,gA ,gB ,gC ,gD ,gE%T,

@S#5@si , j #5F $sP%T

$sA%T

$sB%T

$sC%T

$sD%T

$sE%T

G
53

1 DxP DyP ~DxP!2/2 ~DyP!2/2 DxPDyP

1 DxA DyA ~DxA!2/2 ~DyA!2/2 DxADyA

1 DxB DyB ~DxB!2/2 ~DyB!2/2 DxBDyB

1 DxC DyC ~DxC!2/2 ~DyC!2/2 DxCDyC

1 DxD DyD ~DxD!2/2 ~DyD!2/2 DxDDyD

1 DxE DyE ~DxE!2/2 ~DyE!2/2 DxEDyE

4 ,

DxC5xC1eaxdt2xP , DyC5yC1eaydt2yP ,

DxD5xD1eaxdt2xP , DyD5yD1eaydt2yP ,

DxE5xE1eaxdt2xP , DyE5yE1eaydt2yP .
8-3
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The expressions ofDxP , DyP , DxA , DyA , DxB , DyB have
been given previously. Since@S# is a (636)-dimensional
matrix, it is very difficult to get an analytical expression f
the solution of equation system~12!. We need to use a nu
merical algorithm to get the solution. Note that the matrix@S#
only depends on the coordinates of mesh points, which
be computed once and stored for the application of Eq.~12!
at all time levels.

In practical applications, it was found that the matrix@S#
might be singular or ill conditioned. To overcome this dif
culty and make the method be more general, we introd
the least-squares approach to optimize the approximatio
Eq. ~11!. Equation~11! has six unknowns~elements of the
vector $V%!. If Eq. ~11! is applied at more than six mes
points, then the system is over determined. For this case
unknown vector can be decided from the least-squa
method. For simplicity, let the mesh pointP be represented
by the indexi 50, and its adjacent points be represented
index i 51, 2, ...,M , whereM is the number of neighboring
an
m

.

03670
n

e
by

he
s

y

points aroundP and it should be larger than five. At eac
point, we can define an error in terms of Eq.~11!, that is,

erri5gi2(
j 51

6

si , jVj , i 50,1,2,...,M . ~13!

The square sum of all the errors are defined as

E5(
i 50

M

erri
25(

i 50

M S gi2(
j 51

6

si , jVj D 2

. ~14!

To minimize the errorE, we need to set]E/]Vk50,k
51, 2, ..., 6,which leads to

@S#T@S#$V%5@S#T$g%, ~15!

where @S# is a (M11)36-dimensional matrix, which is
given as
@S#53
1 Dx0 Dy0 ~Dx0!2/2 ~Dy0!2/2 Dx0Dy0

1 Dx1 Dy1 ~Dx1!2/2 ~Dy1!2/2 Dx1Dy1

- - - - - -

- - - - - -

- - - - - -

1 DxM DyM ~DxM !2/2 ~DyM !2/2 DxMDyM

4
~M11!36
re-
ed

ent
q.
ds
say

is
his
el
and$g%5$g0 ,g1 ,...,gM%T.
The Dx andDy values in the matrix@S# are given as

Dx05eaxdt, Dy05eaydt, ~16a!

Dxi5xi1eaxdt2x0 , Dyi5yi1eaydt2y0 ,

for i 51,2,...,M . ~16b!

Clearly, when the coordinates of mesh points are given,
the particle velocity and time step size are specified, the
trix @S# is determined. Then from Eq.~15!, we obtain

$V%5~@S#T@S# !21@S#T$g%5@A#$g%. ~17!

Note that@A# is a 63(M11)-dimensional matrix. From Eq
~17!, we can have

f a~x0 ,y0 ,t1dt !5V15 (
k51

M11

a1,k
a gk21

a , ~18!

wherea1,k
a are the elements of the first row of the matrix@A#,
d
a-

which are precomputed before the LBM is applied. The
fore, little computational effort is introduced as compar
with the standard LBE. Note that the functiong is evaluated
at the time levelt. So, Eq.~18! is actually an explicit form to
update the distribution function at the time levelt1dt for
any mesh point. In the above process, there is no requirem
for the selection of neighboring points. In other words, E
~18! has nothing to do with the mesh structure. It only nee
to know the coordinates of the mesh points. Thus, we can
that Eq.~18! is basically a meshless form.

III. D2Q7 SPEED MODEL AND IMPLEMENTATION
OF BOUNDARY CONDITIONS ON THE WALL

It can be seen that Eq.~18! is applied along thea direc-
tion. Here,a can be any direction. This implies that Eq.~18!
can be uniformly applied to different lattice models. In th
paper, we select the D2Q7 model. The configuration of t
model is shown in Fig. 2. The discrete velocity of this mod
is defined as
8-4
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ea5H ~0,0!, a50

$cos@~a21!p/3#,sin@~a21!p/3#%c, a51,2,...,6.
~19!
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The parameterc is the particle streaming speed. The flu
kinetic viscosity is given by

y5
~2t21!

8
c2d t . ~20!

The equilibrium density distributionf a
eq is chosen to be

f a
eq5rF1

2
1

1

6 S 2
ea•U

c2 14S ea•U

c2 D 2

2
U2

c2 D G . ~21!

The speed of sound of this model iscs5c/2, and the equa-
tion of state isP5rcs

2 for an ideal gas. Although the pro
posed method has a meshless feature, it is recommend
use a structured grid. This is because in our method, only
coordinates of mesh points are involved. When a structu
grid is used, it is much easier for us to define the coordina
of mesh points. In our application, we use a structured g
and takeM as eight for convenience. As shown in Fig. 3, f
an internal mesh point~i, j! @noted as ‘‘0’’ in Eq. ~18!#, the
eight neighboring points are taken as (i 21, j 21); (i
21, j ); ( i 21, j 11); (i , j 21); (i , j 11), (i 11, j 21); (i
11, j ); and (i 11, j 11). Therefore, at each mesh point, w
only need to store nine coefficientsa1,k , k51,2, . . . ,9 be-
fore Eq.~18! is applied.

Implementation of boundary conditions is an essential
sue in LBM. Many kinds of boundary treatments have be
published in the past few years@24–31#. Although these
treatments are successful in a number of physical situati
we intend to believe that a complete halfway wall boun
back condition@30–31# is the most simple and efficient i
practicle applications.

The complete halfway wall bounce-back condition, whi
originated from LGCA, assigns eachf a the value of thef a in
its opposite direction with no relaxation on the bounce-ba
points. The treatment is independent of the direction, wh
gives us more convenience in treating complicated bound
problems. The complete halfway wall bounce-back condit
has second order of accuracy because macroscopic quan

FIG. 2. Schematic plot of the D2Q7 model on a wall bounda
~thick curve!.
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such as stress force is evaluated on the halfway wall betw
the bounce-back row and the first flow row. As shown in F
2, for the D2Q7 model, at a boundary point,f 4 , f 5 , and f 6
point to the flow field from the wall, which will be deter
mined from the boundary condition.f 1 , f 2 , and f 3 are com-
puted by streaming from points inside the flow field. S
using the halfway wall bounce-back condition,f 4 , f 5 , and
f 6 are evaluated as

f 45 f 1 , f 55 f 2 , f 65 f 3 . ~22!

IV. SOME THEORETICAL ANALYSIS
OF THE PRESENT METHOD

To illustrate the accuracy of the scheme and its applica
range, a mathematical analysis is carried out in this sect
and it will serve as a theoretical justification for the prese
method. For simplicity, we take the one-dimensional mo
to illustrate our analysis. Under this consideration, the st
dard LBE becomes

f a~x1eadt, t1dt !5 f a~x,t !1
f a

eq~x, t !2 f a~x, t !

t
.

~23!

Using Taylor-series expansion, we have

f a~x1eadt, t1dt !

5 f a~x,t !1dt
] f a

]t
1eadt

] f a

]x
1

dt2

2

]2f a

]t2

1
~eadt !2

2

]2f a

]x2 1eadt2
]2f a

]t]x
1

dt3

6

3S ]3f a

]t3 13ea

]3f a

]t2]x
13ea

2 ]3f a

]t]x2 1ea
3 ]3f a

]x3 D1¯ .

~24!

With Eq. ~24!, the standard LBE is equivalent to

FIG. 3. Schematic plot of neighboring point distribution arou
the point~i, j!.
8-5
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dt
] f a

]t
1eadt

] f a

]x
1

dt2

2 S ]2f a

]t2 12ea

]2f a

]t]x
1ea

2 ]2f a

]x2 D
5

f a
eq2 f a

t
1O~dt3!. ~25!

Equation~25! will be used to analyze the present method. W
start with the Taylor-series expansion which truncates to
second-order derivative terms. With Taylor-series expans
Eq. ~23! can be written as

f a~x1dx,t1dt !1~eadt2dx!
] f a

]x
1

~eadt2dx!2

2

]2f a

]x2

5 f a~x,t !1
f a

eq~x,t !2 f a~x,t !

t
. ~26!

As shown previously, the truncation error of Eq.~26! is third
order. Equation~26! consists of three unknowns, whic
should be determined by three equations. Suppose that
cal mesh pointxi is considered. The three equations can
obtained by applying the Taylor-series expansion at th
positions streamed, respectively, from mesh pointsxi 21 , xi ,
xi 11 . Solving the three equations, we can get the solutio

f a~xi ,t1dt !5aigi~ t !1ai 21gi 21~ t !1ai 11gi 11~ t !,
~27!

where

gi~ t !5 f a~xi ,t !1
f a

eq~xi , t !2 f a~xi ,t !

t
,

ai52
~12r i !~11r i 11!

r i r i 11
, ai 215

~11r i 11!

r i~r i 111r i !
,

ai 115
~12r i 11!

r i 11~r i 111r i !
,

r i5~xi2xi 21!/~eadt !, r i 115~xi 112xi !/~eadt !.

Using second-order Taylor-series expansion, Eq.~27! can be
reduced to

f a~xi ,t !1dt
] f a

]t
1

]t2

2

]2f a

]t2

5gi~ t !2eadt
]gi

]x
1

~eadt !2

2

]2gi

]x2 1O@dt3#.

~28!

On the other hand, from Eq.~23! and Taylor-series expan
sion, we have
03670
e
e
n,
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e
e

gi~ t !5 f a~xi ,t !1
f a

eq~xi ,t !2 f a~xi ,t !

t

5 f a~xi1eadt,t1dt !

5 f a~xi ,t !1dt
] f a

]t
1eadt

] f a

]x
1O~dt2!. ~29!

Differentiating Eq.~29! with respect tox gives

eadt
]gi

]x
5eadt

] f a

]x
1eadt2

]2f a

]t]x

1~eadt !2
]2f a

]x2 1O~dt3!, ~30a!

~eadt !2
]2gi

]x2 5~eadt !2
]2f a

]x2 1O~dt3!. ~30b!

Finally, by substituting Eqs.~29! and ~30! into Eq. ~28!, we
obtain exactly the same differential equation as Eq.~25!. As
shown in@12# and @32#, when the Chapman-Enskog expa
sion is applied to Eq.~25! with two time scales, the Navier
Stokes~NS! equations can be recovered with second orde
accuracy. This indicates that our Taylor-series expans
form can recover the NS equations with second order
accuracy even when a nonuniform mesh (r iÞr i 11) is used.

Next, we will consider the Taylor-series expansion- a
least-squares-based form. For the one-dimensional prob
the second-order Taylor-series expansion has three
knowns, that is, the distribution function and its first- a
second-order derivatives at the mesh pointxi and the time
level t1dt. As shown above, to solve for these three u
knowns, we need to have three equations, which are obta
by applying the Taylor-series expansion at three positi
streamed from three mesh pointsxi 21 , xi , xi 11 . To apply
the least-squares approach, the Taylor-series expansion i
plied at four positions, which are streamed, respective
from four mesh pointsxi 21 , xi , xi 11 , xi 22 . So, we can get
four equations for three unknowns. As shown in the previo
section, by using the least-squares approach, the final e
tion system can be obtained as

S 4 a
1

2
b

a b
1

2
c

1

2
b

1

2
c

1

4
d

D S f a~xi ,t1dt !

eadt
] f a~xi ,t1dt !

]x

~eadt !2
]2f a~xi ,t1dt !

]x2

D
5S (

k51

4

gi 1k23

(
k51

4

dkgi 1k23

(
k51

4

dk
2gi 1k23

D , ~31!
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where a5 (
k51

4

dk , b5 (
k51

4

dk
2, c5 (

k51

4

dk
3, d5 (

k51

4

dk
4,

d15
eadt2~xi2xi 22!

eadt
512r i 22 ,

d25
eadt2~xi2xi 21!

eadt
512r i ,

d35
eadt

eadt
51,

d45
eadt2~xi2xi 11!

eadt
511r i 11 .

The functiong is defined as before. The solution of Eq.~31!
gives

f a~xi ,t1dt !5
1

D (
k51

4

@~bc2ad!~b2adk!

2~b22ac!~c2adk
2!#gi 1k23 , ~32!

where D5(bc2ad)(4b2a2)2(b22ac)(4c2ab). Using
Taylor-series expansion,gi 1k23 can be expressed as

gi 1k235gi1~xi 1k232xi !
]g

]x
1

~xi 1k232xi !
2

2

]2g

]x2

1O@~xi 1k232xi !
3#

5gi1~dk21!eadt
]gi

]x

1
~dk21!2

2
~eadt !2

]2gi

]x2 1O~dt3!. ~33!

By substituting Eq.~33! into Eq. ~32!, we obtain

f a~xi ,t1dt !5s1gi1s2eadt
]gi

]x

1s3

~eadt !2

2

]2gi

]x2 1O@dt3#, ~34!

where

s15
1

D (
k51

4

@~bc2ad!~b2adk!2~b22ac!~c2adk
2!#,

s25
1

D (
k51

4

@~bc2ad!~b2adk!2~b22ac!~c2adk
2!#

3~dk21!,

s35
1

D (
k51

4

@~bc2ad!~b2adk!

2~b22ac!~c2adk
2!#~dk21!2.

Furthermore, from the definition ofa, b, c, andd, we have
03670
s15
1

D F ~bc2ad!(
k51

4

~b2adk!2~b22ac!(
k51

4

~c2adk
2!G

5
1

D
@~bc2ad!~4b2a2!2~b22ac!~4c2ab!#51,

~35a!

s25
1

D F ~bc2ad!(
k51

4

@2b1~b1a!dk2adk
2#2~b22ac!

3 (
k51

4

(cdk2c2a~dk
32dk

2!G
5

1

D
@~bc2ad!@24b1~b1a!a2ab#2~b22ac!

3@ac24c2a~c2b##521, ~35b!

s35
1

D F ~bc2ad!(
k51

4

$b~dk
222dk11!2a~dk

322dk
21dk!%

2~b22ac!(
k51

4

$c~dk
222dk11!2a~dk

422dk
31dk

2!%G
5

1

D
@~bc2ad!$b~b22a14!2a~c22b1a!%

2~b22ac!$c~b22a14!2a~d22c1b!%#51. ~35c!

The above results show that Eq.~34! can be reduced to ex
actly the same form as Eq.~28!. Equation~28! can recover
the NS equation with second order of accuracy. This me
that our least-squares-based form can also recover the
equation with second order of accuracy no matter what
mesh is, uniform or nonuniform.

V. NUMERICAL TESTS

In this section, the proposed Taylor-series expansion-
least-squares-based LBM is validated by some test ca
First, the wave-number dependence of shear viscosity of
present method is studied using a generalized hydrodyna
analysis@33# for a sinusoidal shear wave. The second t
case is the ‘‘no flow’’ simulation in a square cavity, which
used to check the detailed balance condition of the pre
method with the use of nonuniform meshes. The other t
test cases are the lid-driven flows in a square cavity and
polar cavity. In these problems, the fluid is bounded by
cavity and is driven by a uniform translation of the lid. Th
cavity flow cases show rich vortex phenomena at ma
scales depending on the Reynolds numbers, and ther
abundant literature to study the flow configuration. Th
these problems are ideal test cases for numerical meth
devised to simulate viscous flows. In the present paper,
numerical work given by Ghia, Ghia, and Keller@34# for the
square cavity flow case, and numerical and experime
work obtained by Fuchs and Tillmark@35# for the polar cav-
8-7
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ity flow case, are used as a benchmark to evaluate the pre
results.

Unless otherwise mentioned, all simulations were carr
out by using nine mesh points for least-squares optimizat
The configuration of these nine mesh points is shown
Fig. 3.

A. Wave-number dependence of shear viscosity

As shown in the previous theoretical analysis, our meth
does not affect the viscosities in the limit of wave numb
k50. Here, it is interesting to study the wave-number dep
dence of shear viscosity at finite value ofk. We will follow
the work of Lallemand and Luo@33# to do this study. As
shown in@33#, the shear viscosityn(k) can be computed by
c-

03670
ent

d
n.
n

d
r
-

n~k!52
1

k2 Re@ ln zT~k!#, ~36!

wherek5(kx ,ky), k5Akx
21ky

2, zT(k) is an eigenvalue cor-
responding to the hydrodynamic mode of the linearized e
lution operatorL, which is given as@33#

L5Ā21@ I 1M 21CM#. ~37!

In Eq. ~37!, M is the transformation matrix from the discre
velocity space to the moment space,C is the linearized col-
lision operator,Ā is the advection vector which is a diagon
matrix. For the present method, the transformation matrixM
and the collision operatorC remain the same as for the sta
dard LBE, but the advection operatorĀ is changed. For the
D2Q9 model, Lallemand and Luo@33# gave the matricesM
andC as
M51
1 1 1 1 1 1 1 1 1

24 21 21 21 21 2 2 2 2

4 22 22 22 22 1 1 1 1

0 1 0 21 0 1 21 21 1

0 22 0 2 0 1 21 21 1

0 0 1 0 21 1 1 21 21

0 0 22 0 2 1 1 21 21

0 1 21 1 21 0 0 0 0

0 0 0 0 0 1 21 1 21

2 , ~38!

C51
0 0 0 0 0 0 0 0 0

s2a2/4 2s2 0 s2g2Vx/3 0 s2g2Vy/3 0 0 0

s3a3/4 0 2s3 s3g4Vx/3 0 s3g4Vx/3 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 s5c1/2 2s5 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 s7c1/2 2s7 0 0

0 0 0 3s8g1Vx 0 23s8g1Vy 0 2s8 0

0 0 0 3s9g3Vy/2 0 3s9g3Vx/2 0 0 2s9

2 . ~39!
th
When the standard LBE is used, the advection operatorĀ is
given as@33#

Ā5diag~1,p,q,1/p,1/q,pq,q/p,1/pq,p/q!, ~40!

wherep5eikx, q5eiky. For the present method, the adve
tion operatorĀ can be obtained through Eq.~18!, and written
as

Ā5diag~1,c1 ,c2 ,c3 ,c4 ,c5 ,c6 ,c7 ,c8!, ~41!
where

ca5 (
j 51

M11

a1
aeik•Dr j , a51,2, . . . ,8, ~42!

Dr j5r j2r0 . In this paper, we use a uniform mesh wi
square grids. So,Dr j5ea dt5ea , wheredt is taken as one.
Thus, Eq.~42! can be reduced to

ca5 (
j 51

M11

a1
a

, je
ik•ea, a51,2, . . . ,8. ~43!
8-8
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FIG. 4. k dependence of viscosities for the standard LBE a
the present method. The solid lines, dotted lines, and dashed
correspond tou50, p/8, andp/4, respectively.

FIG. 5. A Typical nonuniform mesh in a square cavity (6
365).

FIG. 6. Convergence history of the maximum velocity mag
tude and the relative difference of density for ‘‘no flow’’ simulatio
in a square cavity.
03670
The adjustable parameters and relaxation parameters tha
peared in the matrixC are taken from the work of Lalleman
and Luo@33#, which are

Vx5Vy50, a2528, a354, c1522, g152/3,

g2518, g45218,

s251.64, s351.54, s55s751.9, s85s951.99,

k5~k cosu,k sinu!.

With these parameters, the eigenvalues of the operatorL can
be computed, and the shear viscosity can be determ
from, Eq. ~36!. The k dependence of the normalized she
viscosity n(k)/n0 for the standard LBE and the prese
method is shown in Fig. 4. Three orientations ofk are chosen
as:u50 ~solid line!, p/8 ~dotted line!, andp/4 ~dashed line!.
As shown in Fig. 4, both the standard LBE and the pres
method create some numerical viscosities ask increases, but
the present method generates much higher numerical vis
ity. For example, atk5p/2 and in the direction ofu5p/8,
the normalized shear viscosity of the standard LBE is ab
2.5 while the corresponding value of the present metho
about 13.5. This may imply that the present method may
be able to give accurate results at large value ofk.

d
es

-

FIG. 7. Streamlines and density contours at time step5100 for
‘‘no flow’’ simulation by using a nonuniform mesh of 65365 and
r max57.39.

FIG. 8. Streamlines and density contours at converged state
‘‘no flow’’ simulation by using a nonuniform mesh of 65365 and
r max57.39.
8-9
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B. ‘‘No flow’’ simulation in a square cavity

One of the crucial measures in the application of the LB
is the so-called detailed balance condition. Violation of t
condition will lead to spurious currents. The detailed balan
condition can be studied by the ‘‘no flow’’ simulation in
region, in which no external forces are introduced, and
the boundaries are the solid walls. When a uniform den
and zero velocity distribution are set up in the whole field
the beginning, the detailed balance condition demands
the uniform density and zero velocity throughout the sp
remain for all times; or numerically, the maximum veloci
magnitude and relative difference of density are kept v
small for all times.

In this paper, the ‘‘no flow’’ simulation in a square cavit
is conducted by using three nonuniform meshes. The m
size of the three nonuniform meshes is the same, that i
365. The difference is on the stretch ratior max, which is
defined as the ratio of the maximum mesh spacing over
minimum mesh spacing. The stretch ratios of three nonu
form meshes are, respectively, 2.19, 3.35, and 7.39. A typ
mesh setup withr max57.39 is shown in Fig. 5. The conve
gence criterion for the computation is set as

iUt1d t
2Uti

iUt1d t
i <1028. ~44!

We start our computation by assigning a uniform dens

FIG. 9. Streamlines for the flow in a lid-driven square cavity.~a!
Re5100, 49349; ~b! Re5400, 49349; ~c! Re51000, 97397; ~d!
Re55000, 1453145; ~e! Re510 000, 1453145.
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(r051) and zero velocity distribution in the whole domai
The viscosity is set as 1/12, and a no-slip boundary condi
is imposed on the four boundaries. It was found that for
the following time steps, the maximum velocity magnitud
defined as uUumax5maxi,j(Au21n2), and the maximum
relative difference of density, defined asuDr̄umax
5maxi,j(ur2r0u/r0), are remained in the order of 1028 and
1027, respectively, by three nonuniform meshes. This res
showed that the nonuniform mesh has some effect on
detailed balance condition, but the effect is so small tha
can be ignored.

We have also conducted the ‘‘no flow’’ simulation by giv
ing a velocity disturbance at the beginning, and found t
the flow field would turn to be static at the converged sta
where the maximum velocity magnitude and the relative d
ference of the density are kept in the order of 1028 and
1027, respectively. By giving a velocity disturbance ofu
50.1 sin(px)sin(py) andn50.1 sin(px)sin(py) at the begin-
ning, the convergence history ofuUumax anduDr̄umax for three
nonuniform meshes is shown in Fig. 6. It can be seen fr
Fig. 6 that all three nonuniform meshes can converge to
static solution, but the time steps required for convergenc
different. The required time steps for convergence are,
spectively, 3400 forr max52.19, 3500 forr max53.35, and
4000 forr max57.39. The need of more time steps for a co
verged solution by a nonuniform mesh with larger stre
ratio is due to the use of smaller time step size. Figure

FIG. 10. Vorticity contours for the flow in a lid-driven squar
cavity. ~a! Re5100, 49349; ~b! Re5400, 49349; ~c! Re51000,
97397; ~d! Re55000, 1453145; ~e! Re510 000, 1453145.
d

TABLE I. Comparison for locations of primary vortex center at different Reynolds numbers.

Vortex center
Reynolds number Ghiaet al. @34# Present method CPU sec by present metho

100
400
1000
5000
10000

~0.61, 0.73!
~0.56, 0.61!
~0.54, 0.56!
~0.52, 0.54!
~0.51, 0.51!

~0.61, 0.73!
~0.56, 0.60!
~0.54, 0.56!
~0.53, 0.56!
~0.51, 0.52!

195.521
600.3833
3567.650
20443.85
64401.57
8-10
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shows the streamlines and density contours obtained by
ing a nonuniform mesh ofr max57.39 after 100 time steps
The effect of initial disturbance on the streamline and den
is clearly observed in the figure. However, when the com
tation is converged, the effect of initial disturbance is
moved, and a static result is obtained. This can be s
clearly in Fig. 8, which shows the streamlines and den
contours by using the same nonuniform mesh at the c
verged state.

C. Lid-driven flows in a square cavity

In this case, the top lid moves from left to right with
constant velocityU. Nonuniform meshes of 49349 for Re
5100 and 400, 97397 for Re51000, 1453145 for Re
55000 and 10 000 are used, respectively, for the calculat
The Reynolds number is defined as Re5UL/n ~based on the
lid velocity and the length of the square cavity!. The use of
nonuniform mesh is desirable, especially for the high R
nolds number case. This is because the thin boundary lay
attached to the solid boundaries. So, to capture the
boundary layer, the mesh spacing near the wall should
very small. Apart from the solid wall, relatively large mes
spacing can be used. In this manner, we can capture the
boundary layer, and in the meantime, we can save the c
putational effort.

Initially a constant densityr51 is prescribed in the
whole field, and the velocities in the interior of the cavity a
set to zero. On the top, thex-component velocity isU, which
is set to 0.15, and they-component velocity is zero. At the
end of each time step, the density distribution functionf a at
the top is set to the equilibrium state. The whole halfw
wall bounce-back boundary conditions are used on the o
three solid walls. For the upper two corners between
stationary wall and the moving wall, which are singul
points, it is found that treatment with the moving wall or th
stationary wall points has little difference in our simulation
In order to make a comparison with the results of Ghia, Gh
and Keller@34#, the present results are normalized accord
to the length of the cavity and the velocity of the top li
Note that the results of Ghia, Ghia, and Keller@34# were
obtained by using the multigrid finite difference method
solve the vorticity-stream function formulation.

Figure 9 shows the streamlines for different Reyno
numbers. The effect of the Reynolds number on the fl
pattern and the structure of the steady recirculating eddie
clearly observed in this figure. Apparently, the flow stru
tures match very well with those of Ghia, Ghia, and Kel
@34#. Figure 10 shows the vorticity contours inside the cav
From this figure, one can easily see that the scale of
primary vortex increases with the Reynolds number, and
magnitude of the vorticity in the central region becom
larger and larger with the increase of the Reynolds num
Table I gives the detailed comparison for locations of
vortex center obtained by the present method and by G
Ghia, and Keller@34#. The relative errors between the tw
solutions are less than 4%. In this table, we also give
CPU time~sec! that is spent in the present computation
the PIII 866 personal computer. Although other informati
03670
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about this aspect is lacking, we still believe, from our n
merical experiences, that the computational efficiency of
present method is competitive as compared with the tra
tional CFD tools. TheU andV velocities along their respec

FIG. 11. U ~left! and V ~right! velocity profiles along vertical
and horizontal central lines for different Reynolds numbers.
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TABLE II. Grid sensitivity with different stretch ratios (Re5400).

Method
Mesh size

~stretch ratio!
Primary vortex

center cmin vn.c.

CPU
~sec!

Ghia et al.
@34#

2573257 ~1.0! ~0.5547, 0.6055! 20.113 909 2.294 69

D2Q9
~Standard

LBE!

1933193 ~1.0! ~0.5573, 0.6042! 20.113 539 2.288 82 7688.94

97397 ~1.0! ~0.5625, 0.6042! 20.107 039 2.187 27 1081.55

D2Q9
~Present!

97397 ~3.35! ~0.5570, 0.6061! 0.113 642 2.291 51 5696.45

49349 ~2.01! ~0.5611, 0.6004! 20.110 376 2.367 18 463.01
D2Q7

~Present!
49349 ~3.35! ~0.5597, 0.6050! 20.112 574 2.304 63 600.38

97397 ~3.35! ~0.5570, 0.6061! 20.113 629 2.291 50 4564.69
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tive central line are displayed in Fig. 11 for different Re
nolds numbers. Obviously, our simulation results are in go
agreement with those of Ghia, Ghia, and Keller@34#.

To test the mesh sensitivity, numerical simulations
Re5400 on mesh sizes of 49349 and 97397 with different
stretch ratios were carried out. The results of the D2
model using the present method on the nonuniform mes
97397 (r max53.35) and the standard LBE on the unifor
mesh of 97397 are also presented for comparison. The
tailed comparison of the primary vortex center, the minimu
stream function valueCmin and the vorticity value at the
primary vortex centervn.c. , and the CPU time required o
PIII 866 are listed in Table II. As shown in this table, th
accuracy of the present method increases with the increa
the grid stretch ratio. At the same level of the grid stre
ratio, the accuracy of the present method is improved w
the increase of the mesh points. It is also seen from this t
that our method needs about five times the computatio
time of the standard LBE when the same number of m
points is used. However, this undesirable feature of
present method can be compensated for by using fewer m
points that, for the standard LBE, cannot give satisfact

FIG. 12. Geometry and a typical nonuniform mesh for the fl
in a polar lid-driven cavity.
03670
d

r

9
of

-

of
h
h
le
al
h
e
sh
y

accuracy. As shown in Table II, for Re5400, the standard
LBE needs at least 1933193 mesh points to reach the sam
order of accuracy as the present method using the mesh
of 97397. As a result, the standard LBE requires 7688
sec CPU time while the present method only needs 5696
sec CPU time. The high efficiency of the present method
obvious. In addition, Table II reveals that the present meth
with the D2Q7 model saves about 20% of computatio
time as compared with the D2Q9 model when the same m
points and distributions are used.

D. Flow in a polar cavity

The polar cavity case is used to show the capability of
present method in treating the flow problem with compl
geometry. The geometry with a nonuniform mesh is given
Fig. 12. The Reynolds number~based on the lid velocity and
the radius of the inner circle! is 350. Initially, a clockwise
velocity of U50.15 is set on the inner lid and other cond
tions are the same as those in the square cavity case
results are normalized in terms of the lid velocity and t
radius of the inner circle.

FIG. 13. Comparison of radial (ur) and azimuthal (uu) velocity
profiles along the line ofu50° with Re5350 ~j, numerical data
by Fuchs and Tillmark;m, experimental data by Fuchs an
Tillmark; –, present result of 49349; , present result of
65365; —–—, present result of 81381!.
8-12
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Figure 13 shows the steady-state azimuthal and radial
locity profiles along the line ofU50. Different results,
which are obtained on 49349, 65365, and 81381 nonuni-
form meshes, together with the experimental and numer
results of Fuchs and Tillmark@35# are included in the figure
for comparison. The results obtained by the present met
agree well with those of Fuchs and Tillmark’s numeric
simulation @35#. The present solutions also compare w
with the experimental data and the discrepancy betw
them may be attributed to the three-dimensional effect in
experiments in which three-dimensional flow structures
observed. Further increase of the mesh points can lea
more accurate results by the present method.

VI. CONCLUSIONS

An explicit Taylor-series expansion- and least-squar
based lattice Boltzmann method was developed in this pa
Theoretical analysis for a one-dimensional case showed
the present method could recover the Navier-Stokes e
tions with second order of accuracy. The successful num
cal simulations for the lid-driven cavity flows showed th
y

nt

tt
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the present method is prospective in practical application
The beauty of the present method is that it still keeps

local and explicit features of the standard lattice Boltzma
method. Therefore, it is able to exploit fully the power
parallel computing. The other advantage of the pres
method is that it is easy for application to flow problems w
complex geometry. Furthermore, the computational e
ciency of the present method is competitive as compa
with that of the standard LBE and of the conventional CF
solvers.

Although the test problems shown in this paper are re
tively simple, the proposed method can be applied to a
other complex problems with the use of nonuniform me
and different lattice models. The present paper shows tha
proposed method gives much larger shear viscosity at la
value of wave numberk. This result is based on a uniform
mesh and the use of symmetric mesh point distribution u
in Eq. ~18!. Further study may be needed for thek depen-
dence of shear viscosity at large value ofk when the nonuni-
form mesh and upwind mesh point distribution are used
Eq. ~18!.
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